
Knowledge Sharing: Agile Methods vs. Tayloristic Methods

Thomas Chau, Frank Maurer, Grigori Melnik
Department of Computer Science

University of Calgary
Calgary, Canada

{chauth,maurer,melnik}@cpsc.ucalgary.ca

Abstract

This paper presents a comparative analysis of knowledge
sharing approaches of agile and Tayloristic (traditional)
software development teams. Issues of knowledge
creation, knowledge conversion and transfer, continuous
learning, competence management and team composition
are discussed. Experience repositories and other tools for
knowledge dissemination are examined.

1. Introduction

Software engineering is a knowledge-intensive
process encompassing requirements gathering, design,
development, testing, deployment, maintenance, and
project coordination and management activities. It is
highly unlikely that all members of a development team
possess all the knowledge required for the aforementioned
activities. This underlies the need for knowledge sharing
support to enable software organizations to (1) effectively
share domain expertise between the customer and the
development team; (2) identify the requirements of the
software system; (3) capture non-externalised knowledge
of the development team members; (4) bring together
knowledge from distributed individuals to form a
repository of organisational knowledge; (5) retain
knowledge that would otherwise be lost due to the loss of
experienced staff; and (6) improve organisational
knowledge dissemination.

More traditional approaches, like the Waterfall model
and its variances, facilitate knowledge sharing primarily
through documentation. They also promote usage of role-
based teams and detailed plans of entire software
development lifecycle. The allocation of work specifies
“not only what is to be done but how it is to be done and
the exact time allowed for doing it” [24]. This shifts the
focus from individuals and their creative abilities to the
processes themselves. These traditional approaches are
often referred to as “plan-driven” or “task-based”. In
contrary, agile methods emphasise and value individuals
and interactions over processes [6]. When comparing

agile and traditional methods, we prefer to use the term
“Tayloristic approaches” when discussing the traditional
methodologies. We believe that the latter should not be
referred as “plan-driven”, because agile methods are also
plan-driven. In fact, we argue that agile methods may
involve more planning activities than Tayloristic
approaches but of shorter cycles (iterations). The term
“task-based” should also be avoided as it points to the
side effect of Tayloristic methods, rather than the cause.

Tayloristic methods heavily and rigorously use
documentation for capturing knowledge gained in the
activities of a software project lifecycle; ensuring product
and process conformance to prior plans; supporting
quality improvement initiatives; and satisfying legal
regulations.

In contrast, agile methods suggest that most of the
written documentation can be replaced by enhanced
informal communications among team members
internally and between the team and the customers with a
stronger emphasis on tacit knowledge rather than explicit
knowledge [21]. They argue that the cost of creating and
updating documents against frequent changes in the
requirements and source code often outweigh the benefits
of documenting the system and domain knowledge in
details. Having said that, agile methods do not completely
leave out documentation, but rather promote self-
documenting designs and self-describing code that
conforms to coding standards and guidelines (either
industry-wide or internal). Some agile methods endorse
modeling as a standard for documentation (e.g. Agile
Modeling), but others consider it to be too heavyweight
(e.g. XP). But all of them agree that documentation
should be lean and mean and there should be just enough
of it.

Knowledge creation and sharing are crucial parts of
both agile and Tayloristic software development
processes. For completeness, we include a short overview
of basic concepts from the area of knowledge
management in section 2. Section 3 covers some
background on agile development approaches. In section
4, we compare how knowledge sharing is handled by both

agile and Tayloristic methods in the following
dimensions: documentation, capture of requirements and
domain knowledge, training, competence management,
team composition, continuous learning, and knowledge
repositories.

2. Knowledge Management Background

Knowledge management is a discipline that crosses
many areas. It involves a variety of subjects such as
economics, psychology, informatics, and technology.
Hence, there exist various definitions of knowledge and
knowledge management [1]. In this paper, we rely on the
learning model proposed by Nonaka and Takeuchi [2].

This learning model categorizes knowledge into tacit
and explicit forms. Based on these two forms of
knowledge, the model differentiates four ways of
transforming knowledge. They are socialization,
externalization, internalization, and combination.

This categorization of knowledge and knowledge
transformation helps to explain the different approaches
Tayloristic and agile methods take in supporting
knowledge sharing.

3. Agile Methods Background

In recent years, agile development methods have
attracted much attention in the software development
community. Many variations exist [7-11, 14-16], but all
of them share the common principles and core values
specified in the Agile Manifesto [6].

4. Knowledge Sharing Support in Agile and
Tayloristic Methods

We will analyze the different strategies Tayloristic and
agile methods take in supporting knowledge sharing in the
following dimensions: documentation, capture of
requirements and domain knowledge, training,
competence management, team composition, continuous
learning, and knowledge repositories.

4.1. Documentation

Common to all software development processes in any
projects is the need to capture and share knowledge about
the requirements and designs of the product, the
development process, the customer’s business domain,
and the project status.

In Tayloristic development approaches like the
Waterfall model and its variants (SDM, SSDM, SADM,
Navigator, ForeFront, Method/1, Summit), most, if not
all, of this knowledge is externalised to multitude of
documents to ensure all possible requirements, design,

development, and management issues are addressed and
captured.

One advantage to this emphasis on knowledge
externalisation is that it reduces the likelihood of loss of
knowledge as a result of knowledge holders leaving the
organisation. By externalising knowledge into explicit
form, Tayloristic methods also enable distributed software
teams to collaborate in a time- and space-independent
manner. On the other hand, most of the knowledge in
software engineering is tacit. Few of them can be made
explicit and few of the explicit knowledge can be
documented in details because software developers are
often reluctant to do so due to tight time constraints and
the huge effort they perceived is required for documenting
what they know [4]. Even if most of the knowledge is
documented, there is the issue of ensuring the
documented knowledge is up-to-date.

For this reason, agile methods advocate lean and mean
and “just enough” documentations. For instance, in
Extreme Programming (XP), one of the agile
development approaches, requirements knowledge is
externalised to index cards [8]. Other agile methods, like
Feature Driven Development (FDD) and Agile Modeling
(AM), suggest domain knowledge and system design
alternatives to be externalised in the form of models [10,
16]. AM in particular suggests this should be done only if
the models facilitate better communication or
understanding of the system. As such, models needs not
be very detailed. In cases when detailed models are
required as in FDD, sophisticated CASE tools are
recommended to reduce the amount of manual effort
required for generating and updating those models.

AM also recommends these models should be made
public for the entire team to see (for example, by posting
them on a wall of the work area). This helps facilitating
knowledge distribution. The use of modeling standards is
similar to the use of coding standards in XP. Both help to
reduce knowledge transfer time by avoiding time-
consuming debates of coding/modeling styles.

Scrum, another agile method, advocates “work-in-
progress” as the only documentation unless the
documentation will be used by others to create a vision
(marketing) or to operate the system (user documentation)
[14].

Although it is not stated, several agile methods (e.g.
XP and Scrum) imply that explicit knowledge including
designs and models should be collectively owned.
Collective ownership can facilitate knowledge evolution
in that anyone in the team can update the model when one
notices it is outdated. If particular individuals own the
models and no one else is permitted to update them, the
model tends not to get updated since others may find it
too burdensome to go through the approval process to
update the models.

However, the fact that any team member can update
the model does not guarantee the model is current. In fact,
AM suggests to reduce the overhead of constantly
ensuring the models are current, models should only be
updated when the cost of using the outdated model
outweighs the cost of updating the models. One
implication of this is that it may hinder reuse of
knowledge since the outdated model may be seen as too
outdated for use. Furthermore, it is not stated how to
determine when cost of using the outdated model
outweighs the cost of updating them.

Compared to Tayloristic methods, there is
significantly less documentation in agile methods. As less
effort is needed to maintain fewer documents, this
improves the probability that the documents can be kept
up to date. To compensate for the reduction in
documentation and other explicit knowledge, agile
methods strongly encourage direct and frequent
communication and collaboration whenever possible in
order to tap the tacit knowledge within the team.

It is important to note that agile methods are often
used for small projects that are localised and hence can
survive without documentation. However, in a distributed
or large organisation where face-to-face collaboration or
communication is inconvenient, documentation may play
a much more important role.

4.2. Requirements and Domain Knowledge

With respect to gathering requirements and domain
knowledge, agile methods advocate strongly for active
stakeholders and users participation through practices
ranging from joint-application design (JAD) sessions and
customer focus groups [7] to on-site customers [8]. Some
agile methods extend this effort further to explicitly
specified business (domain) study [9] or domain modeling
sessions [10]. Although Tayloristic methods do not
suggest any specific practices that support active
stakeholder and user participation, some of the above
requirements engineering techniques are also practiced in
some Tayloristic projects.

All these practices facilitate collaboration between the
customers and the development team in determining and
planning system features to be implemented. System
and/or domain knowledge is disseminated to the
development team more effectively due to the frequent
and close contact with the customers. Compared to
approaches where only the business analyst discuss the
requirements with the customers and delegates
development tasks to developers, the above practices
allows most of the development team to understand the
system better through mandatory collaboration between
the team and the customers. Through dialogue,
individuals’ mental models and skills are converted to
common concepts and understanding. Sharing time and

space together allows nourishing and energising this type
of collective tacit knowledge.

Tayloristic processes differ from agile methods in that
all requirements are captured before any design and
development. A side effect of this is that the development
team rarely interacts with the customers to gain any
feedback on their understanding of the system
requirements. This approach is efficient as long as system
requirements remain stable till the project ends. However,
there exist scenarios where rapid and constant changes to
requirements are unavoidable. XP addresses this issue by
having customer representatives working at the
development team’s site. This practice allows the
developers to communicate directly with the customers
throughout the development cycle. Consequently, system
requirements can be acquired and clarified much faster. A
limitation of this practice is that the customers and the
developers need to be co-located. This is often not
possible given the distributed nature of the workforce in
the current business environment. There are, however,
several studies looking at adapting agile methodologies
for use in a distributed environment (see [22, 23]). They
show that through the groupware, teams can communicate
and collaborate on projects even if they are not co-
located. This is not limited to synchronous
communication only. Case studies provide evidence of
virtual teams working even in different time zones [25].

Volatile system requirements can be attributed to the
fact that customers generally do not know their real needs
and wants until they see and use a functional component
of the system. Capitalising on this phenomenon, most
agile methods mandate small and frequent releases, which
allow both the development team and the customers to
have a better understanding of the system and allow
customers to generate requirements that are fit for them.
This is because the customers get to see working features
more frequently. Working closely with the customer
provides an opportunity for what Masao Maekawa calls
“seamless co-experiencing”. Customer’s needs and the
knowledge required to solve the problems are more tacit,
and often customers find it hard to express it explicitly.
So, by experiencing what customers are experiencing,
developers actually get the knowledge required to solve
the problems effectively and to avoid a common situation
in the Tayloristic world when the customer declares that
the large set of features presented at the end are not
satisfying their needs. This happens either because of the
disconnect of the development team and the customer or
simply because customer’s needs have changed since the
requirements were originally captured and frozen in the
requirements specification document.

4.3. Training

With regards to disseminating process and technical
knowledge from experienced team members to novices in
the team, Tayloristic and agile methods use different
training mechanisms as well. While it is not stated, formal
training sessions are commonly used in Tayloristic
organizations to achieve the above objective. Agile
methods, on the other hand, recommend informal
practices (e.g. pair programming and pair rotation in case
of XP). Pair programming involves two programmers
working in front of one computer designing, coding, and
testing the software together.

One advantage with formal training sessions is that
training content and practices can be standardized and be
applied consistently across multiple teams in a large
organization but formal training sessions are expensive as
they mean loss of valuable development time for both the
trainers and the trainees.

Such problems, however, are not evident in pair
programming. A practitioner reported that “since pairing
is a part of daily life, no one has to take downtime to help
out the new person. Much of the mundane technical
training can be assimilated as part of the job” [12]. XP
also recommends pairs be rotated in the entire
development team. XP proponents cite these practices
have the benefits of: decreased learning curve by 84%
[11]; improved communication and coordination [11];
fostering a culture of knowledge sharing; and facilitate the
sharing of tacit knowledge. Examples of tacit knowledge
being shared include system knowledge, coding
convention, design practices, and tool usage tricks.
Developers tend not to document this knowledge and it is
usually not explicitly taught through formal training.
Study also indicates that pair programming together with
regular meetings helps mitigate risks of knowledge loss
due to attrition [13].

Informal training approaches like pair programming
and pair rotation are not problem-free unfortunately.
Training content may vary, or worse, conflict across
different pairs. Assigning two people to work
cooperatively as a pair is also an extremely tricky task.
One may argue that pair programming constantly reduces
the productivity of the experts as they need to train novice
all the time and formal training is therefore less
expensive. We believe that pair programming can be
more expensive than formal training, or vice versa,
depending on the circumstances. It should be possible to
put in place a training infrastructure that has the benefits
of both approaches.

4.4. Competence Management

Identifying what your staff knows or doesn’t-know is
known as competence management. Studies have shown

that people are often not aware of knowledge holders that
might be relevant to them [19].

To address this problem, agile methods suggest daily
stand-up meeting during which each developer (or a pair)
needs to present his/her work done since the last meeting
[14]. Team members may also voice their enquiries
during the meetings. Such presentation provides visibility
of the presenter’s work to fellow developers and project
managers. Everyone in the team knows who has worked
on or is knowledgeable about which parts of the system.
They know whom to contact when they need to work on
parts of the system that they are unfamiliar with.

While Tayloristic methods do not mandate any
specific practice to deal with this issue, a common
practice is to identify experts based on document
authorship.

4.5. Trust and Care

As software development is a very social process, it is
important to develop organisational and individual trust in
the teams and also between the teams and the customer.
Trusting other people (and their code) facilitates
reusability and leads to more efficient knowledge
generation and knowledge sharing. Through collective
code ownership, stand-up meetings, onsite customer, and
in case of XP, pair programming, agile methods promote
and encourage mutual trust, respect and care among
developers themselves and with respect to the Customer.
The key of knowledge sharing here are the interactions
among members of the teams which happen voluntarily,
and not by an order from the headquarters.

4.6. Team Composition

In a large organization, it is often the case that
different roles emerge. In Tayloristic teams, these
different roles are grouped together as a number of role-
based teams each of which contains members of the same
role. In contrast, agile teams use cross-functional teams.
Such a team draws together individuals performing all
defined roles. Rotations from one role to another are
common. It is also possible to have highly specialised
experts (for example, security analysts and usability
engineers) shared among several teams in an organisation.

One advantage to role-based teams is that teams
whose work products are independent of each other can
work in parallel as long as there is not much knowledge
flow among the different functional sub-team. This is
often seen in repeatable manufacturing-like processes
[23]. However, in knowledge-intensive software
development that demands information flow from
different functional sub-teams, role-based teams tend to
lead to islands of knowledge and difficulty in its sharing
among all the teams. As hand-offs between teams usually

are based on document flow, the knowledge of one team
that is required by the other team must be externalised and
documented. Although reviews try to minimize the
knowledge loss, externalisation and documentation
processes cannot guarantee that all knowledge is captured
and even if most of it was rigorously captured, there is
still no guarantee or way to check its correctness till the
project sign-off.

Cross-functional teams should be used to facilitate
better knowledge transfer. This is especially the case for
agile methods since they are recommended to be used
where there is a lot of uncertainty and unknown
knowledge about the domain and system requirements,
and the technologies to be used are new and unexplored.

4.7. Continuous Learning

Continuous learning is supported by some agile
methods in the form of retrospectives. Examples include
Post-Sprint meetings [14], reflection workshops [15],
post-iteration phases [9], and review phases [7]. These are
in essence post-mortem reviews except that they are
conducted not only at the end of a project but also during
the project. Retrospectives facilitate learning of any
success factors and obstacles of the current management
and development process. In cases where team members
face obstacles of the current process, such as for example
stand-up meetings being too long, retrospectives provide
the opportunity for these issues to be raised, discussed,
and dealt with during the project rather than at the end of
project. Retrospectives in agile methods, however, only
facilitate intra-team learning. Together with other agile
practices, they have no explicit support for inter-team
learning within an organisation.

Tayloristic organizations also use retrospectives and
they are often conducted after big milestones and at the
end of projects. The duration of these big milestones are
much longer than the iteration lengths in agile projects.
Hence, fewer retrospectives are performed in Tayloristic
projects. Unlike agile teams, Tayloristic teams support
continuously learning not only at the project team but also
at the organization levels. The latter is achieved by having
a separate process group that analyzes experiences from
different project teams and refines the standard
development process which all project teams in the
organization need to conform to. This is in conflict with
the agile principles. There is recent work that attempts to
use a tool-oriented approach to generate adaptive
development methodologies, however, effectiveness of
such approach is still unknown [18].

4.8. Knowledge Repositories

As mentioned before, Tayloristic methods rely heavily
on explicit knowledge to ensure conformance to prior

plans and externalisation to mitigate knowledge loss. In
most of these organisations, their existing infrastructure to
facilitate the capture and sharing of knowledge is based
on the Experience Factory concept [3] and experience
repositories in particular [4]. Current implementations of
the experience repositories range from a mere document
repository to an expert finder for expert identification to
Process-Centered Software Engineering Environments
(PSEEs) for providing context-sensitive knowledge. [4, 5]

The Experience Factory strongly advocates reuse of
previous experience and having a centralised team
responsible for repository maintenance. The former
reinforces continuous learning on both team and
organisation levels. The latter has the benefit of making
knowledge that was gained by particular project teams
accessible to the entire organisation.

On the other hand, critics argue that the repository-
only approach does not address how well users internalise
and use this explicit knowledge or how users’ tacit
knowledge is managed [20]. They claim that learning or
the internalisation of explicit knowledge is a social
process. One does not learn alone but learns mainly
through tacit knowledge gained from interactions with
others. Furthermore, tacit knowledge is often difficult to
be externalised into a repository. A repository by itself
also does not support communication or collaboration
among people. Although these criticisms can be addressed
by expert finders or PSEEs, there are also problems with
these two approaches. Expert finder has the potential
problem of the profiles of the knowledge holder being
outdated or overstated. Although some of PSEEs support
dynamic changes in the users’ tasks, majority of the
modern PSEEs remain static and less adapting.

We believe that due to the high complexity of the
software process in general, it is hard to create and even
more difficult to effectively maintain the experience
repository. The operation support cost may overweight
the benefits of such experience repository. Hence, tools
like the Wiki Web may be more appropriate as a
knowledge repository for agile teams [17]. Unlike
implementations of the Experience Factory concepts, the
responsibility and capability of maintaining the content
stored in a Wiki Web is decentralised to everyone in the
team. The fact that anyone can update any type of content
posted on a Wiki Web at anytime without undergoing a
rigorous review-approval process normally associated
with Experience Factories eases the burden of
maintaining the knowledge repository. The open and
informal nature of the tool allows the team to control the
amount and details of knowledge to be externalised. On
the other hand, the informal nature of the tool places great
responsibilities on the shoulders of every team member to
ensure the quality of the content stored in the repository.
The informal nature of the tool may also poses difficulty
in retrieving information in an efficient manner.

5. Conclusion

Tayloristic development approaches support
knowledge sharing primarily by explicit knowledge
externalised in documents or repositories. The Experience
Factory concept of reusing previous project experiences
and a centralised knowledge management organisation
provides the infrastructure necessary in supporting
continuous learning at the project team and organisation
levels. On the other hand, its main drawbacks are that it
does not address issues of how well users internalise
explicit knowledge and the sharing of tacit knowledge
that is not externalised.

Agile development approaches rely heavily on
socialisation through communication and collaboration to
access and share tacit knowledge within the project team.
When externalisation and internalisation are used to
transfer knowledge, all agile methods suggest that they
should be supported by close communication and
collaboration. All agile methods involve the customers
directly in acquiring requirements and domain
knowledge. An iterative development approach is used to
provide rapid feedback and continuous learning between
the customers and the development team. To facilitate
learning among developers, agile methods use
daily/weekly stand-up meetings, pair programming, pair
rotation and collective ownership. The use of
retrospectives also supports continuous learning at a
project team level. Agile methods’ emphasis on people,
communities of practice, communication, and
collaboration excels in facilitating the practice of sharing
tacit knowledge at a team level. They also foster a team
culture of knowledge sharing, mutual trust and care. In
addition, tools like Wiki enable easy and effective sharing
of explicit knowledge.

6. References

[1] M. Alavi, D. Leidner, “Knowledge Management Systems:
Issues, Challenges, and Benefits”, Communications for the
Association for Information Systems, Vol. 1, Article 7,
1999.

[2] I. Nonaka, “A Dynamic Theory of Organizational
Knowledge Creation”, Organization Science, Vol. 5, No. 1,
1994, pp. 14-37.

[3] V. Basili, G. Caldiera, H. D. Romback, “Experience
Factory”, In Encyclopedia of Software Engineering, Vol. 1,
John Wiley & Sons, 1994, pp. 476-496.

[4] I. Rus, M. Lindvall, “Knowledge Management in Software
Engineering”, IEEE Software, May-June 2002

[5] P. Garg, M. Jazayeri, “Process-centered Software
Engineering Environments”, IEEE Computer Society Press,
1996.

[6] Agile Manifesto. http://agilemanifesto.org

[7] J. Highsmith, K. Orr, Adaptive Software Development: A
Collaborative Approach to Managing Complex Systems,
Addison Wesley, 2000.

[8] K. Beck, Extreme Programming Explained: Embrace
Change, Addison Wesley, 1999.

[9] J. Stapleton, DSDM Dynamic Systems Development
Method: The Method in Practice, Addison Wesley, 1997.

[10] P. Coad, J. de Luca, E. Lefebvre, Java Modeling Color with
UML: Enterprise Components and Process, Prentice Hall,
1999.

[11] L. Williams, R. Kessler, Pair Programming Illuminated,
Addison Wesley, 2002.

[12] G. Srinivasa, P. Ganesan, “Pair Programming: Addressing
Key Process Areas of the People-CMM”, In Proceedings of
XP/Agile Universe 2002, Chicago, August 4-7, 2002,
Lecture Notes in Computer Science 2418: Springer Verlag.

[13] L. Benedicenti, R. Paranjape, “Using Extreme
Programming for Knowledge Transfer”, In Proceedings of
XP2001 Conference, Cagliari, Villasimius, Sardinia, Italy,
May 23-30, 2001.

[14] K. Schwaber, M. Beedle, R. Martin, Agile Software
Development with SCRUM, Addison Wesley, 2001.

[15] A. Cockburn, Agile Software Development, Addison
Wesley, 2001.

[16] S. Ambler, R. Jeffries, Agile Modeling: Effective Practices
for Extreme Programming and the Unified Process.
Addison Wesley, 2002.

[17] The Wiki Web. http://c2.com/cgi/wiki
[18] S. Henninger, A. Ivaturi, K. Nuli, A. Thirunavukkaras,

”Supporting Adaptable Methodologies to Meet Evolving
Porject Needs”, In Proccedings of XP/Agile Universe 2002,
Chicago, August 4-7, 2002, Lecture Notes in Computer
Science 2418:Springer Verlag.

[19] S. Mahe, C. Rieu, “Towards a Pull-Approach of KM for
Improving Enterprise Flexibility Responsiveness: A
Necessary First Step for Introducing Knowledge
Management in Small and medium Enterprises”, In
Proceedings of the International Symposium on
Management of Industrial and Corporate Knowledge,
Compiegne, 1997.

[20] L. Prusak, M.Lesser, Communities of Practice, Social
Capital, and Organizational Knowledge, IBM Institute for
Knowledge Management,1999.

[21] A. Cockburn, J. Highsmith, “Agile Software Development:
The People Factor”, IEEE Computer, Vol. 34, No.11, 2001.

[22] P. Baheti, L. Williams, E. Gehringer, D.Stotts, “Exploring
Pair Programming in Distributed Object-Oriented Team
Projects”, In Proceedings of XP/Agile Universe 2002,
Chicago, August 4-7, 2002; Lecture Notes in Computer
Science 2418: Springer Verlag, pp. 208-220

[23] D. Stotts, L.Williams, A Video-enhanced Environment for
Distributed Extreme Programming. Internal Report, 2002.
http://rockfish-cs.cs.unc.edu/misc/dxp-SEL02abst.pdf

[24] F. Taylor, The Principles of Scientific Management, Dover
Pubns, 1998.

[25] M. Kircher, P. Jain, A. Corsaro, D. Levine, “Distributed
eXtreme Programming”, In Proceedings of XP2001
Conference, Cagliari, Villasimius, Sardinia, Italy, May 23-
30, 2001.

http://agilemanifesto.org/
http://c2.com/cgi/wiki

