- Mary Poppendieck
Poppendieck L.L.C

- Grigori Melnik

Microsoft Corporation

Plan for the day

® 10:00-10:30 Intro — agile tour

® 10:30-12:00 Reality of agile —
Industry perspective

® 13:15-14:15 Reality of agile —
Microsoft/p&p perspective

® 14:15-16:30 Staged discussion —
4 Atlssue topics

® 16:45-17:45 Agile Unleashed panel

How will this workshop help you?

® |dentify areas for improvement on
your projects

® Think about ways to make those changes

® By explaining how we do it

® Help you think about things in a multitude of
new ways

® Change your frame of reference
® Understand key principles of agile teams

The market would consist of specialists in system building, who
would be able to use tried parts for all the more commonplace parts
of their systems... The ultimate consumer of systems based on
components ought to see considerably improved reliability and
performance, ... and also to avoid the now prevalent failings of the
more mundane parts of systems, which have been specified by
experts, and have then been written by hacks.

Taylorism/Fordism

® Basic principles

e Standardized products
® Repeated tasks having potential for automation

® Unautomated tasks analyzed using work study
methods
® work is extremely task focused
® work is specialized with divisional labor

® Production lines with the work moving to the
workers

e focus on repeatable process!

Agile Mindset

Continuously delivering value by self-organizing
teams in the face of changing requirements

AGILE PROGRAMMING
DOESN'T JUST MEAN
DOING MORE WORK
WITH FEWER PEOPLE.

WE NEED USE
THREE MORE AGILE
PROGRAM~— PROGRAM—
MERS. MING

FIND ME SOME
WORDS THAT DO
MEAN THAT AND

ASK AGAIN,

METHODS.
('VW\—

Q [

o8 ©2008 Scott Adama, Inc./Dist. by UFS, Inc.

www.dilbert.com scottadama®aolcom

© Scott Adams, Inc./Dist. by UFS, Inc.

Retrospective Tour

e 2000-2001
e 2002

e 2003

e 2004

® 2005

e 2006-2007
e 2008-...

Suitable contexts
Scalability
Adaptability
Methodologies zoo
Convergence
Entering mainstream

Agile v27?

Reality of Agile: Industry Perspective

® \What Works, What Doesn’t, and Why
® Mary Poppendieck

G 3

.

aw~ What Works — What Doesn’t

What Works

1. Technical Practices
2. Small Batches

3. Pull Scheduling

4. Focus on Learning
What Doesn’t

1. Complexity

2. Handoffs

Pon A

- PR
- I -
B e *)

_'.".3

. -~ A Lesson From Our History

B

2]
-
S
.
.

o w

R
sl iat

1972: New York Times Information Bank

Structured Programming

Edsger Dijkstra: [Quality by Design.] The quality of the product can never be
established afterwards. Whether the correctness of a piece of software can be
guaranteed or not depends greatly on the structure. ... Testing 1s a
very inefficient way of convincing oneself of the correctness of a program.

Dave Parnas: [Information hiding.] Divide program into modules based on their
responsibility and the likeliness of future change, not on order of flow.

Top Down Programming

Terry Baker: [Continuous Integration] An evolutionary approach to systems
development....integration 1s completed parallel with, rather than after, unit
coding....As a result, acceptance and system testing have been nearly error free.

Pon A

. <'§~_§:
- *i

e,

> awe A Lesson From Our History

Chief Programmer Team

Lead & Backup pair — responsible for designing and programming the system.

Both deeply involved in design and programming. Review each other’s work.

Lead programmer supervises other programmers and reviews their work.

Backup capable of taking over for lead. Continually tests the system.

Library — repository for all code. Common code ownership. e
[Technical Leader, Pairing, Common Code Ownership]

Results of New York Times Project) ¢

100+ times more productive and higher quality than typical at the time:
10,000 LOC and one detected fault per person-year (83,000 LOC total)
21 faults in acceptance testing; 25 further faults in the first year of operation

BUT — Resource Management Prevails

Because we cannot depend on the existence of a super-programmer in any project
and because we must transfer our people around in order to apply the right number
of resources at the right time to a contract, we have found that it is important to

build our systems without dependence upon any particularly strong individual.
—J.D. Aron: 1969 NATO Software Engineering Conference, Rome

1976: Software Engineering — Barry
The Problem

MARDWARE
t TBM-50D

0%618

SOFTWARE { 80%

MEDIAN -~ TRW SURVEY
20%

RELATIVE
COsT
T0
F1X
ERROR

Hardware-software cost trends.

1 1 1

1
DEVELOPMENT ACCEPTANCE OPERATION
TEST TEST

1
REQUIREMENTS DESIGN CODE

PHASE IN WHICH ERRCR DETECTED

Software validation: the price of procrastination.

October 08 Copyright©2008 Poppendieck.LLC

1976 — Barry Boehm:
The Solution:

-

DETAILED ¢
DESIGN |

VALIDATION :

Fig. 2. Software life cycle.

October 08 Copyright©2008 Poppendieck.LLC

1982: Life Cycle Concept Considered Harmful

Daniel McCracken & Michael Jackson
— ACM Software Engineering Notes, April 1982

1. Any form of life cycle is a project management
structure impcsed on system development. To contend that
any life cycle scheme, even with variations, can be applied
to all system development is either tc fly in the face of
reality or to assume a life cycle so rudimentary as to be
vacuous.

2. The 1ife cycle concept perpetuates our failure
so far, as an industry, to build an effective bridge across
the communication gap between end-user and systems analyst.
In many ways it constrains future thinking to fit the mold
created in respcnse to failures of the past.

3. The life cycle concept rigidifies thinking, and
thus serves as poorly as possible the demand that systems
be responsive to change. We all know that systems and
their requirements inevitably change over time.

To impose the concept on emerging
methods in which much greater responsiveness to change is
possible, seems to us to be sadly shortsighted.

October 08

Technical Excellence

Low Dependency Architecture
Quality by Design

Technical Disciplines
Respect for Complexity
Skilled Technical Leaders
Learning / Feedback Cycles

Success = Accomplishing the
System’s Overall Objective

Robust Over Time

16 October 08 Copyright©2008 Poppendieck.LLC

g Quality by Design

A Quality Process Builds Quality IN.
Rather than trying to test quality in later.

Where do we get the idea that it Is okay to find defects at
the end of the development process?

There is extensive evidence that finding and removing
defects the moment they occur leads to dramatic quality
and productivity improvements.

Quality by Design
Code that reveals its intentions

. . @
Design/code reviews 4\7
Immediate, automated testing \
Continuous, nested integration ?

Escaped defect analysis & feedback

“??g
FunCtlonaI EXp|OratOry Manual: As early
Tests Testing
Presentation Usability Manual: As earl
] anual: As early

Layer Tests Testing
Unlt PSR / 'Illty/ Tool-Based: As
Tests Stress Tests

Test Layer
Separately \

Automated:
Every Day

18 October 08 Copyright©2008 Poppendieck.LLC

Automated:
Every Build

19

IS

Tool-Based:
Every Iteration

Regression/ | PSR*/-ility /
End-End Tests Stress Tests

Escaped Failure
Defects Scenarios

Automated: Analyze cause Planned Fault
Every Iteration of every defect Injection

October 08 Copyright©2008 Poppendieck.LLC

- Building Block Disciplines
Mistake-Proofing Simplicity
Design/Code Reviews Architectural Standards
Configuration/Version Management DevNeIopment Standards
amin
One Click Build (Private & Public) e .
Continuous Integration sl Logging "‘lﬁiﬁ‘,ﬁﬁ"mnl
- b Security e
Automated Unit Tests y- Usability i
Automated Functional Tests il Standard Tools
System Testing with each Iteration IDE’s
Stress Testing (App & System Level) Code Checkers
- £ th don’ Configuration Management
0 STOP if the tests don’t pass Build/Test Harnesses
Automated Release / Install Packaging Refactoring
Escaped Defect Analysis & Feedback Continuous Improvement

of the Code Base

G 3

.

aw~ What Works — What Doesn’t

What Works

1. Technical Practices
2. Small Batches

3. Pull Scheduling

4. Focus on Learning
What Doesn’t

1. Complexity

2. Handoffs

- Batch Size

What 1s Batch Size?

The amount of information
transferred at one time

The % of specifications completed
before development begins

The amount of code
tested in a system test

Compare:

Cost of setup (linear)
Test set-up and execution

Cost of waiting (hyperbolic)
Find/fix defects long after injection
Waiting costs are:
Usually hidden & delayed
Often larger than expected

The Lean Approach:

Recognize true waiting costs
Drive down setup overhead

Cost

S,
e 72/,0 o
o

S
Sefup ququs

1T 1

Batch Size

From Don Reinertsen
www.roundtable.com/MRTIndex/LeanPD
ART-reinertsen-INT2-1.html

Iterative Development

Iteration
Planning

@ 9
e
Q % Stories

One Iteration

Iteration
Execution

“Ahead
¥ <€
Road Map:
Prioritized
list of
desirabl

features

Feedback

- Reduce Set-up Time

Manufacturing
Common Knowledge:
Die changed have a huge overhead
Don’t change dies very often
Taiichi Ohno:
Economics requires frequent die change
One Digit Exchange of Die

Software Development
Common Knowledge:

Releases have a huge overhead
Don’t release very often
Lean:
Economics requires many frequent releases
One Digit Releases

—- How Good are You?

When in your release cycle do you try to freeze
code and test the system? What percent of the
release cycle remains for this “hardening”?

Top Companies: <10%
| Typical: l30%
|

|
Sometimes: 50%

N
v

Release Cycle

G 3

.

aw~ What Works — What Doesn’t

What Works

1. Technical Practices
2. Small Batches

3. Pull Scheduling

4. Focus on Learning
What Doesn’t

1. Complexity

2. Handoffs

y wwe Timebox, Don’t Scopebox

Ask NOT: How long will this take?
Ask rnstead: What can be done by this date?

s A

Pull Scheduling
Small Requests

Input Flow /W Output Capacity/
—SRAA | j

Never

3 Pull Scheduling:
Larger Systems

8/1 9/15 11/1 12/15 2/1 3/15 5/1

Start Release 1: Release 2 Release 3 Release 4 Release 5 Release 6
Feature Set 1 Feature Set 2 Feature Set 3 Feature Set4 Feature Set5 Feature Set 6

1 2)3 4) 5 3 7 8)% 10)11 1313 14)% 16)17 1;
Sep Oct Nov Dec Jan Feb Mar Apr May

Aug

Start 3 Months 6 Months 9 Month Timebox 12 Month Timebox 15 Months
Product Knowledge Review: Knowledge Review: Knowledge Review: Knowledge Review: First
Concept Customer Interest Proof of Concept Alpha Release Beta Release Production

Approved Technical Approach Alpha Release Decisions Beta Release Decisions 15t Release Decisions Release

» 2

J .
!

aw~ What Works — What Doesn’t

What Works

1. Technical Practices
2. Small Batches

3. Pull Scheduling

4. Focus on Learning
What Doesn’t

1. Complexity

2. Handoffs

- Wishful Thinking

Doing the same thing over and over
again and expecting different results

Einstein’s definition of Insanity
Making Decisions without Data

Discarding Knowledge

Failure to put knowledge & p—
experience into usable form — /Aﬁ

Failure to involve the people K&DI\?
who have relevant knowledge ™~

- " gm - Allen Ward “Lean Product \Q
Testing to Specification gé

Assuming the spec defines all possible failure modes -

The A3 Report Software Examples

A concise, useful summary
of knowledge that: Patterns

— condenses findings and Use Cases
— captures important results.

Problem Under Investigation
Proposal to Change a Process
Business Goals of the System
Customer Interest Summary

H .
| ——
([T [sl
; ML 1] e]|_—w_
- - | -

—— e

» 2

!

; w- Knowledge-Based Debugging

Escaped Defect Analysis 7 jsq the Scientific Method

Log all Problems Observe the failure

Capture relevent information Come up with a hypothesis
Reproduce the failure as to the cause of the failure

Or analyze static data . L.
e Make predictions based
Use the Scientific Method on the hypothesis

Establish a diagnosis v - :
y Test the hypothesis with

Correct the Defect experiments & observations
Prove that the problem is gone : .
If the experiment saitsfies the

Improve the Test Suite predictions, refine hypothesis
Prevent future reoccurance If the experiment does not

Improve Design Practices satisfy the predictions, create
Find patterns and antipatterns an alteranate hypothesis

Use Statistical Analysis Repeat Steps 3 and 4 until
Predict Defects from History a diagnosis Is established.

See "Predicting Bugs from History” by Andreas Zeller
Chapter 4 in "Software Evolution” Mens & Demeyer, Ed.

See "Why Programs Fail” by Andreas Zeller

Solve One Problem at a Time

Data-Based Problem Analysis
v What’s Important?
x Pareto Analysis

v Root Cause Analysis
x |shikawa (Fishbone) Diagram
* Five Why’s?

Many Quick Experiments

Cause-and-Effoct Diagram of the
Request Age A Software is Dolayed

KAIZEN

>16 weeks 8-16 weeks 6-8 weeks 4-6 weeks 2-4weeks <2 weeks

October 08 Copyright©2008 Poppendieck.LLC

From Duward Sobek: htip:/www.coe.montana.edu/IEfaculty/sobek/Adindex. htm

PROBLEM

« Note any contextual or background information necessary to fully understand the issue.
« Indicate how this problem affects the company’s goals or is related to its values.

CURRENT CONDITION:

Insert a diagram that illustrates how the current process works.

Label the diagram so that anyone knowledgeable about the process can understand.
Note the major problems (we like to put them in storm bursts to set them apart)

Include quantified measures of the extent of the problem - graphical representations are
best!

TARGET CONDITION:

« Insert a diagram that illustrates how the proposed process will work, with labels.
« Note or list the countermeasure(s) that will address the root cause(s) identified.
+ Predict the expected improvement in the measure of interest (specifically and quantitatively)

ROOT CAUSE ANALYSIS:

List the main problem(s)

Ask appropriate “why?" questions until you reach the root cause. A rule-of-thumb: you
haven't reached the root cause until you've asked “why?™ at least 5 times!

List the answers to each why question

Froblens
L+ first bmamediate cavse
L cause for the first bmediote cauce
- deeper caunse to the preceding cause
L gre.

PLANNED EXPERIMENTS

+ List the actions which must be done in order to realize the Target Condition, along with the
individual responsible for the action and a due date.
+ Add other items, such as cost, that are relevant to the implementation.

MEASUREMENT & FOLLOWUP

October 08 Copyright©2008 Poppendieck.LLC

G 3

.

aw~ What Works — What Doesn’t

What Works

1. Technical Practices
2. Small Batches

3. Pull Scheduling

4. Focus on Learning
What Doesn’t

1. Complexity

2. Handoffs

- Respect Complexity

Step 1. Accept that Change Is not the Enemy. Lo,
60-80% of all software is developed after first release. ‘V%

Step 2: Recognize that Is the Enemy. b

The classic problems of developing software products derive from this
essential complexity and its nonlinear increase with size. Fred Brooks

Step 3: Don’t be Fooled by Rising Levels of Abstraction.

High level languages removed drudgery from programming, making
the job more complex and requiring higher caliber people. Dijkstra

Step 4: Keep it Simple — Write Less Code!

A designer knows he has achieved perfection not
when there Is nothing left to add, but when there Is
nothing left to take away. Antoine de Saint-Exupery

prowm Extra Features

Features / Functions Used in a Typical System

Cost of Complexity

Oiten / Always
Used: 20%

. Always 7%

Standish Group Study Reported at XP2002 by Jim Johnson, Chairman

Rarely / Never
Usea: 64%

Cost

he Biggest opportunity for increasing Software
Development Productivity: Write Less Code!

G 3

.

aw~ What Works — What Doesn’t

What Works

1. Technical Practices
2. Small Batches

3. Pull Scheduling

4. Focus on Learning
What Doesn’t

1. Complexity

2. Handoffs

- Handoffs

! » A hand-off occurs whenever we separate:*

_"

Responsibility — What to do

Knowledge @ — Howtodo it
Action — Actually doing it
Feedback — Learning from results

*Allen Ward “Lean Product and Process Development”

Whole

Overall i

Team

Operations
and Support

- Go and See

“Go and See” what the real problem is.

The whole team should talk directly to
customers, ask questions, model and discuss
Ideas before (and while) developing a product.

-a - — &

"When we started doing a lot of banking, we hired some product managers
with banking experience. One day one of them comes to a meeting that
included me and banking engineers and says, "I want these features." And I
replied, "If you ever tell an engineer what features you want, I'm going to
throw you out on the street. You're going to tell the engineers what problem
the consumer has. And then the engineers are going to provide you with a
better solution than you'll ever get by telling them to put some dopey feature
in there." Bill Campbell - Chairman, Intuit. Counselor - Apple, Google, etc.

Reality of Agile: Microsoft Perspective

® Context

® patterns & practices — Mecca of agile
® XP and Scrum

® Big product units —a somewhat different story

M Microsoft’
patterns & practices
n practices for predictable results

Customer-Connected Engineering

® Communication

® Breadth: Codeplex communities
® Depth: Customer Advisory Boards

® Think in terms of stories
not features

® Software from the customer perspective
® Frequent checkpoints with customers
® Using frequent drops to the communities

® Customer workshops
® Advisory meetings

f.; patterns & practices — Enterprise Library - Source Code - Windows Internet Explorer

"" - Q http://www.codeplex.com/entlib/SourceControl/ListDownloadableCommits.aspx hd H Live Search

Forward -
P ‘O patterns&practices—EnterpriseLibrar...‘ ‘ f:ﬂ < S'f? Q v [v iy Page~

1 1

@ patterns & practices — Enterprise Library

Open Source Community
Home Releases Discussions Issue Tracker Stats People License
Recent Check-ins | Patches | Upload Patch
Source Control Clients
Source control client connection instructions Project Name: entlib

TFS Server URL: https://tfsO1.codeplex.com
Subversion URL: https://entlib.svn.codeplex.ce

Recent Check-Ins

1-7 of 7 Change Sets < Previous 1 Next = Show All Cha
Change Set Download / Date Comment By Downl
Browse

42311 H Download Fri at Automatic Check-in from p&p build server. ctavares 1
= Browse 3:11PM

41652 H Download Oct 13 at Automatic Check-in from p&p build server. ctavares 23¢
= Browse 10:33 AM

40861 EH Download Sep 29 at Automatic Check-in from p&p build server. ctavares 19:
= Browse 11:11 AM

39896 EH Download Sep 15 at Automatic Check-in from pép build server. ctavares 36!
= Browse 12:36 PM

38960 EH Download Sep 4 at Automatic Check-in from pép build server. ctavares 21¢
= Browse 321 PM

36894 E Download Aug 19 at Automatic Check-in from pé&p build server. ctavares 25!
= Browse 342 PM

36891 EH Download Aug 19 at Automatic Check-in from pép build server. ctavares 32
= Browse 328 PM

1-7 of 7 Change Sets < Previous 1 Next = Show All Cha

Be Clear on What Success Means

® On time?
® On budget?
® |n scope?

® That’s not project success —
that’s success of project estimation at best

® Real success is how much value the project
brings to business

® Remember Motorola Iridium???

Planning and Estimation

® Planning-driven vs. plan-driven

® Maintain prioritized
story backlog

® Choose initial t-shirt size

Functiqna|ity —

® The planning game
® Monitor velocity
® Plan for iteration zero

“Plans are nothing; planning is everything.”
- Dwight D. Eisenhower.

Low-F1 Iteration Planning: Warm

1-F1 Iteration Planning: Still Warm

Work Items in iter...08-02-11 [Results]| Work Items in iter..08-01-21 [Results] Work Items in iter..08-01-28 [Results] | Tasks in Entlib 4.1 [Results] | Start Page
Query Results: 18 results found (1 currently selected).

4 ID Title Work It.. State Compl.. Remain.. Discipline Assigned To
15646 Create a WMLNET 2.0 plugin for the eh block Task Closed 8 Development Hanz Zhang
15693 Support configuration of arbitrary container extensions Task Closed 8 Development Hanz Zhang
15767 Provide both absolute and avearage performance counters Task Closed 16 Development Hanz Zhang
15768 Allow explicit ordering of handlers in PIAB Task Closed 10 Development Hanz Zhang
15848 WMLNET 2.0 - Provide a mechanism to register types with the Ins.. Task Closed 4 Development Hanz Zhang
15875 Related to work item 15874 - Fix for hierarchical configuration fil.. Task Closed Development Hanz Zhang
15876 WMLNET 2.0 - add code comments to new code Task Closed Development Hanz Zhang
15878 WMLNET 2.0 - Remove the attribute based mechanism Task Closed Development Hanz Zhang
15879 WMLNET 2.0 - Remove the "mappers” hierarchy Task Closed 4 Development Hanz Zhang
15926 test - Update manageability support for the Caching block Task Closed 6 Test Pravin Pawar (Tata Consultancy Services)
15854 test - Convert project files to Orcas Task Closed Test VenkataAppaji Sirangi (Tata Consultancy Servi...
15857 test - Perform exploratory test on Unity Task Closed Test Hanz Zhang
15745 test - Allow multiple validation rulesets to run at once Task Closed 6 Test MNaveen Guda (Tata Consultancy Services)

15760 test - RelaRemove all the unnecessary AndCompositeValidators f.. Task Closed Test MNaveen Guda (Tata Consultancy Services)

Ammem .~ PRI S T TP . - . E — L - . I T} e e ER= L -

Task 15767 : Provide both absolute and avearage performance counters

Area and Title: Enterprise Library\Core (Configuration, Instrur ~ Provide both absolute and avearage performance counters

Discipline; Description | History

Development ~ | lils
Currently, most performance counters are rates - they are not :

lteration: useful unless there is a lot of occurences. Link Type Description Comments
Enterprise Library\08-0: Changeset Changeset 198.. Source control ch...
Assigned to: Work [tem Task 16125: Te...

Work Item Scenario 1537...

Hanz Zhang
Rank:

State: Attachements:

Closed MName Size Comme..

Team Formation

® Program manager
® Dev lead + developers
® Test lead + testers
® Technical Writer(s)

® Domain experts (SMEs)

® Core teams with consistent members

® Consultants available
® But it’s about what you do, not job titles!

® Small teams but not too small

Team Tasks... The Game
What do you do on the team?

Business

Risk Assesment

Product Portfolio

N\
S

~_ Customer

Arch

PdM
—Dev
—PgM

Design and — Test

Coding

plg > cow > chicken > larus glaucescens

Are we done?

VS

The Done-Done State

® Team agrees to non-ambiguously describe
what must take place for a feature/release
to be considered complete.

® Defining and adhering to a done-done state
affect time-to-market and visibility.

® The closer you come to deployable system,
the more confidence you have in your
progress and the less time to release.

® Cost is reduced because you pay for defect
fixes early

® Think of prevention vs inspection

Done-done (Feature/Story Level) -
Example

The acceptance criteria are specified and agreed upon

The team has a test/set of tests (preferably automated) that
prove the acceptance criteria are met

The code to make the acceptance tests pass is written

The unit tests and code are checked in

The Cl server can successfully build the code base

The acceptance tests pass on the bits the Cl server creates
No other acceptance tests or unit tests are broken

User documentation is updated

The customer proxy signs off on the story

Done-done (Release Level) - Example

® All MCR features are included in the RC build.
® Allincluded features have been accepted by the customer.
® A security review has been conducted.

® The test team is confident that none of the included features
has a significant risk of causing problems in the production
environment (MQR is met)

® There are clear, concise deployment and rollback instructions
for the operations team.

® There are clear trouble-shooting scripts and knowledge base
articles for use by the help desk representatives.

Done-done — Guidelines

® Reporting on partial work done is error prone;
at worst, we are 90% done 90% of the time

® The closer a requirement is delivered to
deployable, the less uncertainty your team has
about the true state of the system.

® Remember, only functionality that is delivered to
the customer has real value.

® The closer a requirement is delivered to a
deployable state, the more defects you have
found and eliminated.

® The done-done state should push your team
members without breaking them.

Demo to Stakeholders

e Confidence i gained by
regularly demonstrable progress

® Increases ViSi bi I ity

® |ncreases product utiIity by giving
the customer a concrete system to evaluate

Demo to Stakeholders — Guidelines

® Working in vertical slices

® Early iterations will not have much built. Do
demos (even if small) anyway to get into the
habit of regularly reviewing your work

® -> healthy rhythm providing feedback
® Don’t demo features that are partially done.

® Keep the demo short (<30 mins)

® The feedback you receive might be
conflicting, the demo is not the place to
resolve issues.

® !l Take notes!

Testing to the Forefront of
Software Development
® Test artefacts are assets not liability

® If you are a customer, demand the supplier
ships test cases (all — unit, integration,
system, perf —alll)

® Focus on testing early

® Focus on producing fast and non-fragile
tests — subconteneous

Process-Agnostic Practices

Unit testing (tests are assets not liability)
Test-Driven Development (TDD)

Continuous Integration (Cl)

Acceptance testing (automate what makes sense)
Iteration planning

Daily stand-ups

Retrospectives

Sustainable pace

You don’t have to be canonically agile to get benefits...

Emphasis on learning!

Challenges

® Too many cooks
® Rewarding teams
® Team continuity

® Teams should feel empowered and encouraged
to address their challenges within the team

4 Hot Issues

gg_ o Map the Value Stream

Value Stream

The flow of activities that starts with a
customer in need, and ends when that

customer’s need 1s satisfied.
Problem Solution

Process Capability:
The reliable, repeatable cycle time from
customer need until that need is satisfied.

Multiple Value Streams
Product Concept < Cycle Time > Product Starts Delivering Value

Feature Request Feature in Production

Urgent Need <& Maintenance Patch Deployed

End-to-End Value Stream

Game Design-ready Shelf
backlog games
15 12
8 e e
Concept S Graphics Sound Integr. &
Sam P assigns P . Dev gr- —>
pres. reSOUrCes design design deploy
2d 1m 6m 1w 6m | | 2m 6m
+
2h 4h 1d 1m 3w 1m 3w
(3m total)
Thanks to: Henrik Kniberg, 3m Value Added Time Process Gamgs out of date
of Crisp, Stockholm @ , =12% cycle = Missed market
. . N 25 m cycle time . .
Used with Permission () efficiency windows

What would you do?

— Demotivated teams
— Overhead costs

E xample 1 Of course there is a
developer available.
E-matl to Technical Assign
REAUESE | ogrisor | APPIOVE Accocament | P Code § Test
value swin 2wk . dswin . b . 1w swin 2 hours 40 win
waste 2 hours 2 hours 1 hour 15 min 10 min 5 hours 20 min

Example 2

weekly review of requests means watt an average of 2 wait an average of 2 | | Bi-weekly releases means a wait of

an average wait of /= week weeks for an architect | | weeks for developers an average of 1 week for verification

¢ [Formsenc\ Approve 5 Technical T verify -
Reques To Quene A pyipyitize ASSLSSMmMent verificatio { Opertions 1% Efficlency

20 wbn total 4 howrs total
value S b 2 min 15 vuin 2 hours 15 pabin 2 yuin 2 hours 40 wmin
waste 15 min /2 week 2 weeks 2 weeks 1week Bhr4swin vaweek & weeks + 4 hrs
Extra 15 minutes to ownly 15 minutes of 4 hours
fill out request form should be needed to verify

October 08 Copyright©2008 Poppendieck.LLC

E le 3 REGE Develop Test
Xa e ments
mp 23 - 33%
Efficiency
123 hours Value
Require T 500-660 Hours
-ments est Total Cycle Time
A 4
Marketing Require-
requests New Approval q Develop Test QA Deploy
ments
Feature
A
RO Develop Test
ments I
Require- Develop Test
ments I
How much is
value 1 hour 1 hour 2 weeks working together Value? 1 hour
waste 1 week 1 day 1 week 2.3monthsto 1
merge week

October 08 Copyright©2008 Poppendieck.LLC

How to know the
software 1s ready
for you and your
customers

Acceptance Testing

® Planned investigation by a customer or
customer proxy to what degree the software

system meets their expectations

® Readiness vs. Acceptance

Doneness Model

MCR

Doneness =

Functionality -

Doneness Model
Waterfall

Incremental with cycles longer than in XP

Extreme Programming

Time

Two Perspectives on Tests

Business Technical
(Granularity of Requirement) (Decomposition of SUT)
® Workflow ® Integration

® Transaction / Use Case ® System

® Interface (e.g. Ul) ® Component
® Rule (Calc, Check) ® Unit

Classic Functional Test Strategy

Manual or
Record &

Playback Workflow Tests
Functional Tests

® Large numbers of

(possibly automated)

functional tests Component

® Very few if any
automated unit tests

Typical when testing (& automation) is "QA’s job”

Better Test Automation Strategy

Various
® L3 rge numbers Of automation tools
very small unit tests (or manual)

Workflow

® Smaller number of

. Tests
functional tests for Keyword

major components Use Case Tests

Recorded ,
Scripted or
Manual

® Even fewer tests for
the entire

application & Business Rule Tests
workflow

Fit

ColumnFixtures
or Data-Driven

Test Automation Strategy

® |dentify Goals

® Why are we automating?
® |dentify Risks

® What risks will automation address?
® |dentify types of tests & when to use

® What kinds of tests need automation?
® |dentify tools for each type of test

Test Automation Guidelines

® Record & Playback # Test Automation # Test
Automation fetish

® Test requirements at lowest level possible

1. Component
2. Use Case
3. Workflow

® Avoid testing multiple concerns together

e Ul and Logic/Rules

® Specify tests at highest possible level of
abstraction & pick appropriate framework

Distributed Teams

® This is the
reality of software
development today

® Maximize communication

® Joint project kick off iteration
® More formal story management

® There is only one team not local and remote

® Everyone participates in daily stand-ups
® Frequent on site visits

® Time zones harder to manage than distance

Distributed Teams

® Conway’s law

® Avoid breaking user stories into tasks and then
assigning tasks according to geography.
Dysfunction: specialization, silos, low “bus”
count

® Have all members participate in the standups
via con call once in a while

® Team continuity: try to keep teams together
over multiple projects

® Single system of reference/ knowledge base

® Sharepoint or wiki or Shared OneNote or Groove

% P
~ .

xR The Apparent Problem with
Two Party Interactions

Opportunism
Q

~ &

Conventional Wisdom:
Companies inevitably look out for their own interests
Contracts are needed to limit opportunistic behavior

A The Real Problem with
Two Party Interactions

Conflict of Interest

Q.

The Lean Approach
Assume other party will act in good faith
Let the relationship limit opportunism

Use the contract to set up incentives

Align the best interests of each party
with the best interests of the joint venture

Eliminate Conflicts of Interest!

- Fixed Price Contracts

Supplier is at greatest risk
Customer has little incentive to accept the work as complete

Generally does not give the lowest cost
Competent suppliers will include cost of risk in bid
Creates the game of low bid with expensive change orders

Generally does not give the lowest risk
Selection favors the most optimistic [desperate] supplier

Least likely to understand project’s complexity
Most likely to need financial rescue ‘\
Most likely to abandon the contract
Customers are least likely
to get what they really want

i - Time-and-Materials Contracts

Customer Is at greatest risk

Supplier has little incentive to complete the work

Therefore need to control supplier opportunism
Enter: Project Control Processes

Detailed Oversight by least knowledgeable party
Supplier must justify every activity

Most Project Control Processes T.,.::
Increase costs o —
Do not add value

— —1

Y

Assume that the original plan is the optimal plan

- Target Cost Contracts

_ &
-
Target cost q‘-»
Target cost includes all changes SL

Target Is the joint responsibility of both parties
Target cost Is clearly communicated to workers
Negotiations occur If target cost Is exceeded
Neither party benefits
Workers at all levels have clear incentives to work
collaboratively, compromise, and meet the target.

Remove Conflict of Interest.

- Contract Format

Structure
Start With An Umbrella or Framework Contract
Establish a Target Cost

Release Work In Stages
Keep Stages Small
Each Stage is an Iteration

Scope Beyond the Existing Stage i1s Negotiable
Contract Form
Describes the relationship, not the deliverables

Sets up a framework for future agreements
Provides for mediation if no agreement is reached

Take aways

® \Welcome to the mainstream!
® Become lean
® Learn, Do, Reflect!

® Strive for both technical excellence +
managerial excellence

® Adopt the empirical way

® but watch out for dysfunctions caused by metrics

® Discover and distill right behaviors of your
continual agility

Related Content

® Microsoft patterns & practices

® msdn.microsoft.com/practices

® Mary’s site:

® poppendieck.com

® Grigori’s blog:
® blogs.msdn.com/agile

http://msdn.microsoft.com/practices
http://www.codeplex.com/Project/ProjectDirectory.aspx?TagName=patterns & practices
http://www.codeplex.com/Project/ProjectDirectory.aspx?TagName=patterns & practices
http://www.codeplex.com/Project/ProjectDirectory.aspx?TagName=patterns & practices
http://www.codeplex.com/Project/ProjectDirectory.aspx?TagName=patterns & practices

agile unleashed—

Panel

-> Mary Poppendieck
- Tom Poppendieck

> Grigori Melnik

- Don Smith

- Ajoy Krishnamoorthy

Microsoft

Your potential. Our passion.”

© 2008 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.
The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market
conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation.
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

