
(USE THIS SPACE FOR PRODUCT
LOGOS WHEN WHITE BACKGROUND

IS REQUIRED)

DELETE WHITE RECTANGLES IF NOT
BEING USED

Mary Poppendieck
Poppendieck L.L.C

 Grigori Melnik
Microsoft Corporation























The general admission of the

existence of software failure in

this group of responsible people is the
most refreshing experience I have had in
a number of years

The market would consist of specialists in system building, who
would be able to use tried parts for all the more commonplace parts
of their systems… The ultimate consumer of systems based on
components ought to see considerably improved reliability and
performance, … and also to avoid the now prevalent failings of the
more mundane parts of systems, which have been specified by
experts, and have then been written by hacks.



































l e a n

What Works – What Doesn’t

What Works

1. Technical Practices

2. Small Batches

3. Pull Scheduling

4. Focus on Learning

What Doesn’t

1. Complexity

2. Handoffs

October 0810 Copyright©2006 Poppendieck.LLC

l e a n

A Lesson From Our History

1972: New York Times Information Bank

Structured Programming
Edsger Dijkstra: [Quality by Design.] The quality of the product can never be

established afterwards. Whether the correctness of a piece of software can be

guaranteed or not depends greatly on the structure. … Testing is a

very inefficient way of convincing oneself of the correctness of a program.

Dave Parnas: [Information hiding.] Divide program into modules based on their

responsibility and the likeliness of future change, not on order of flow.

Top Down Programming
Terry Baker: [Continuous Integration] An evolutionary approach to systems

development….integration is completed parallel with, rather than after, unit

coding….As a result, acceptance and system testing have been nearly error free.

October 0811 Copyright©2008 Poppendieck.LLC

l e a n

A Lesson From Our History

Chief Programmer Team
1. Lead & Backup pair – responsible for designing and programming the system.
2. Both deeply involved in design and programming. Review each other’s work.
3. Lead programmer supervises other programmers and reviews their work.
4. Backup capable of taking over for lead. Continually tests the system.
5. Library – repository for all code. Common code ownership.
[Technical Leader, Pairing, Common Code Ownership]

Results of New York Times Project
100+ times more productive and higher quality than typical at the time:

 10,000 LOC and one detected fault per person-year (83,000 LOC total)
 21 faults in acceptance testing; 25 further faults in the first year of operation

BUT – Resource Management Prevails
Because we cannot depend on the existence of a super-programmer in any project
and because we must transfer our people around in order to apply the right number
of resources at the right time to a contract, we have found that it is important to
build our systems without dependence upon any particularly strong individual.

– J.D. Aron: 1969 NATO Software Engineering Conference, Rome

October 0812 Copyright©2008 Poppendieck.LLC

l e a n

What is Software Engineering?

1976: Software Engineering – Barry Boehm

The Problem

October 0813 Copyright©2008 Poppendieck.LLC

IEEE Transactions on Computers

l e a n

What is Software Engineering?

1976 – Barry Boehm:

The Solution:

Footnote:
At a panel discussion at ICSE 2007 in Minneapolis, Barry Boehm discussed his exponential cost model, under
fire from Tom DeMarco. Barry said that completing requirements before proceeding worked well for large
government projects in the 1970’s, but the approach proved inappropriate for later projects. However, people
were so “brainwashed” by his earlier work that the “lifecycle” solution could no longer be questioned.

October 0814 Copyright©2008 Poppendieck.LLC

l e a n

What is Software Engineering?

1982: Life Cycle Concept Considered Harmful
Daniel McCracken & Michael Jackson

– ACM Software Engineering Notes, April 1982

October 0815 Copyright©2008 Poppendieck.LLC

….

l e a nFragile Over Time

Let us Not Confuse:

Technical Excellence

Low Dependency Architecture

Quality by Design

Technical Disciplines

Respect for Complexity

Skilled Technical Leaders

Learning / Feedback Cycles

Success = Accomplishing the

System’s Overall Objective

Project Management

Complete Requirements

Quality by Testing

Maturity Levels

Scope Control

Resource Management

Timeboxes

Success = Achieving Planned

Cost, Schedule and Scope

October 0816 Copyright©2008 Poppendieck.LLC

Robust Over Time

l e a n

Quality by Design

A Quality Process Builds Quality IN.

Rather than trying to test quality in later.

Where do we get the idea that it is okay to find defects at
the end of the development process?
 There is extensive evidence that finding and removing

defects the moment they occur leads to dramatic quality
and productivity improvements.

Quality by Design

Code that reveals its intentions

Design/code reviews

 Immediate, automated testing

Continuous, nested integration

 Escaped defect analysis & feedback

October 0817 Copyright©2007 Poppendieck.LLC

l e a n

Application Testing

October 0818 Copyright©2008 Poppendieck.LLC

Continuous

Integration

Test to

Specification
Test to Failure

Product

Design

Interaction

Design

Technical

Design

Automated:

Every Day

Test Layer

Separately
Automated:

Every Build

Functional

Tests

Unit

Tests

Presentation

Layer Tests

Exploratory

Testing

Usability

Testing

PSR / -ility /

Stress Tests

Manual: As early

as possible

Manual: As early

as possible

Tool-Based: As

early as practical

l e a n

System Testing / UAT

October 0819 Copyright©2008 Poppendieck.LLC

Frequent

Integration

Test to

Specification
Test to Failure

Before

Deployment

After

Deployment

Regression /

End-End Tests

Escaped

Defects

PSR* / -ility /

Stress Tests

Failure

Scenarios

Tool-Based:

Every Iteration

Analyze cause

of every defect

Automated:

Every Iteration

Planned Fault

Injection

*PSR = Performance, Security, Resilience

l e a n

Building Block Disciplines

Mistake-Proofing

 Design/Code Reviews

 Configuration/Version Management

 One Click Build (Private & Public)

 Continuous Integration

 Automated Unit Tests

 Automated Functional Tests

 System Testing with each Iteration

 Stress Testing (App & System Level)

 STOP if the tests don’t pass

 Automated Release / Install Packaging

 Escaped Defect Analysis & Feedback

Simplicity

Architectural Standards

Development Standards
 Naming

 Coding

 Logging

 Security

 Usability

 Standard Tools
 IDE’s

 Code Checkers

 Configuration Management

 Build/Test Harnesses

Refactoring
 Continuous Improvement

of the Code Base
October 0820 Copyright©2007 Poppendieck.LLC

l e a n

What Works – What Doesn’t

What Works

1. Technical Practices

2. Small Batches

3. Pull Scheduling

4. Focus on Learning

What Doesn’t

1. Complexity

2. Handoffs

October 0821 Copyright©2006 Poppendieck.LLC

l e a n

Batch Size

What is Batch Size?
 The amount of information

transferred at one time
 The % of specifications completed

before development begins

 The amount of code
tested in a system test

 Compare:
 Cost of setup (linear)

 Test set-up and execution

 Cost of waiting (hyperbolic)
 Find/fix defects long after injection

 Waiting costs are:
 Usually hidden & delayed

 Often larger than expected

 The Lean Approach:
 Recognize true waiting costs

 Drive down setup overhead

October 0822 Copyright©2007 Poppendieck.LLC

Batch Size
C

os
t

From Don Reinertsen
www.roundtable.com/MRTIndex/LeanPD/

ART-reinertsen-INT2-1.html

l e a n

Iterative Development

October 0823 Copyright©2008 Poppendieck.LLC
features

desirable

list of

Prioritized

Road Map:

Stories

& Tests

Daily

Every 2-4

Weeks

Iteration

Execution

Iteration

Planning

Deployment

- Ready

Software

One Iteration

Ahead

FeedbackReady–Ready

Done–Done

l e a n

Reduce Set-up Time

Manufacturing

Common Knowledge:
 Die changed have a huge overhead

 Don’t change dies very often

Taiichi Ohno:
 Economics requires frequent die change

 One Digit Exchange of Die

Software Development

Common Knowledge:
 Releases have a huge overhead

 Don’t release very often

Lean:
 Economics requires many frequent releases

 One Digit Releases

March, 200324 Copyrignt©2003 Poppendieck.LLC

l e a n

How Good are You?

When in your release cycle do you try to freeze

code and test the system? What percent of the

release cycle remains for this “hardening”?

October 0825 Copyright©2008 Poppendieck.LLC

Typical: 30%

Sometimes: 50%

Top Companies: <10%

Release Cycle

l e a n

What Works – What Doesn’t

What Works

1. Technical Practices

2. Small Batches

3. Pull Scheduling

4. Focus on Learning

What Doesn’t

1. Complexity

2. Handoffs

October 0826 Copyright©2006 Poppendieck.LLC

l e a n

Timebox, Don’t Scopebox

Ask NOT: How long will this take?

Ask instead: What can be done by this date?

October 0827 Copyright©2007 Poppendieck.LLC

l e a n

Pull Scheduling

Small Requests

October 0828 Copyright©2007 Poppendieck.LLC

Output CapacityInput Flow

Never

l e a n

Pull Scheduling:

Larger Systems

October 08

29

Copyright©2008 Poppendieck.LLC

Start

Product

Concept

Approved

3 Months

Knowledge Review:

Customer Interest

Technical Approach

6 Months

Knowledge Review:

Proof of Concept

Alpha Release Decisions

12 Month Timebox

Knowledge Review:

Beta Release

1st Release Decisions

15 Months

First

Production

Release

9 Month Timebox

Knowledge Review:

Alpha Release

Beta Release Decisions

Aug MaySep Oct Nov Dec Jan Feb Mar Apr

11/1

Release 2

Feature Set 2

12/15

Release 3

Feature Set 3

2 - 15
11

1 - 15

13
2 - 15

15
1 - 15

1
2 - 15

9
16 - 31

10
16 - 31

12
2 - 15

5
15 - 30

4
Aug - Aug

2
16 - 31

6

2/1

Release 4

Feature Set 4

16 - 31
16

2 - 15
17

3/15

Release 5

Feature Set 5

9/15

Release 1:

Feature Set 1

16 - 30
8

1 - 15
7

5/1

Release 6

Feature Set 6

16 - 28
14

Apr - Apr
18

2 - 15
3

8/1

Start

l e a n

What Works – What Doesn’t

What Works

1. Technical Practices

2. Small Batches

3. Pull Scheduling

4. Focus on Learning

What Doesn’t

1. Complexity

2. Handoffs

October 0830 Copyright©2006 Poppendieck.LLC

l e a n

Wishful Thinking

1. Doing the same thing over and over

again and expecting different results

 Einstein’s definition of Insanity

2. Making Decisions without Data

3. Discarding Knowledge

 Failure to put knowledge &

experience into usable form

 Failure to involve the people

who have relevant knowledge

4. Testing to Specification

 Assuming the spec defines all possible failure modes
October 0831 Copyright©2006 Poppendieck.LLC

Allen Ward “Lean Product

and Process Development”

l e a n

Knowledge Briefs

Software Examples

Patterns

Use Cases

Problem Under Investigation

Proposal to Change a Process

Business Goals of the System

Customer Interest Summary

Product Concept

Project Charter

Release Goal

Iteration Goal

High Level Architecture

Design Review Results

October 0832 Copyright©2008 Poppendieck.LLC

The A3 Report
A concise, useful summary

of knowledge that:

– condenses findings and
– captures important results.

l e a n

Knowledge-Based Debugging

Escaped Defect Analysis
1. Log all Problems
 Capture relevent information

2. Reproduce the failure
 Or analyze static data

3. Use the Scientific Method
 Establish a diagnosis

4. Correct the Defect
 Prove that the problem is gone

5. Improve the Test Suite
 Prevent future reoccurance

6. Improve Design Practices
 Find patterns and antipatterns

7. Use Statistical Analysis
 Predict Defects from History

Use the Scientific Method
1. Observe the failure

2. Come up with a hypothesis
as to the cause of the failure

3. Make predictions based
on the hypothesis

4. Test the hypothesis with
experiments & observations
 If the experiment saitsfies the

predictions, refine hypothesis

 If the experiment does not
satisfy the predictions, create
an alteranate hypothesis

5. Repeat Steps 3 and 4 until
a diagnosis is established.

October 0833 Copyright©2007 Poppendieck.LLC

See ”Why Programs Fail” by Andreas Zeller
See ”Predicting Bugs from History” by Andreas Zeller
Chapter 4 in ”Software Evolution” Mens & Demeyer, Ed.

l e a n

Relentless Improvement

Solve One Problem at a Time

Data-Based Problem Analysis
 What’s Important?

 Pareto Analysis

 Root Cause Analysis
 Ishikawa (Fishbone) Diagram

 Five Why’s?

Many Quick Experiments

October 0834 Copyright©2008 Poppendieck.LLC

Request Age

248

112

77
88

38

5

248

360

525
563 568

437

44%

100%

63%

77%

99%
92%

0

50

100

150

200

250

300

>16 weeks 8-16 weeks 6-8 weeks 4-6 weeks 2-4 weeks < 2 weeks

N
u

m
b

e
r

o
f

R
e

q
u

e
s

ts

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

C
u

m
u

la
ti

v
e

Kai

Change

Zen

Good

l e a n

Problem Solving Template

October 0835 Copyright©2008 Poppendieck.LLC

PLANNED EXPERIMENTS

MEASUREMENT & FOLLOWUP

PROBLEM

l e a n

What Works – What Doesn’t

What Works

1. Technical Practices

2. Small Batches

3. Pull Scheduling

4. Focus on Learning

What Doesn’t

1. Complexity

2. Handoffs

October 0836 Copyright©2006 Poppendieck.LLC

l e a n

Respect Complexity

Step 1: Accept that Change is not the Enemy.
 60-80% of all software is developed after first release.

Step 2: Recognize that Complexity is the Enemy.

 The classic problems of developing software products derive from this
essential complexity and its nonlinear increase with size. Fred Brooks

Step 3: Don’t be Fooled by Rising Levels of Abstraction.
 High level languages removed drudgery from programming, making

the job more complex and requiring higher caliber people. Dijkstra

Step 4: Keep it Simple – Write Less Code!
 A designer knows he has achieved perfection not

when there is nothing left to add, but when there is
nothing left to take away. Antoine de Saint-Exupery

October 0837 Copyright©2007 Poppendieck.LLC

l e a n

Extra Features

Cost of Complexity

The Biggest opportunity for increasing Software
Development Productivity: Write Less Code!

October 0838 Copyright©2007 Poppendieck.LLC

C
o

s
t

Time

Features / Functions Used in a Typical System

Standish Group Study Reported at XP2002 by Jim Johnson, Chairman

Always 7%

Often 13%

Sometimes

16%
Rarely 19%

Never 45%

Rarely / Never

Used: 64%

Often / Always

Used: 20%

l e a n

What Works – What Doesn’t

What Works

1. Technical Practices

2. Small Batches

3. Pull Scheduling

4. Focus on Learning

What Doesn’t

1. Complexity

2. Handoffs

October 0839 Copyright©2006 Poppendieck.LLC

l e a n

Handoffs

October 0840 Copyright©2006 Poppendieck.LLC

A hand-off occurs whenever we separate:*

 Responsibility

 Knowledge

 Action

 Feedback
*Allen Ward “Lean Product and Process Development”

− What to do

− How to do it

− Actually doing it

− Learning from results

Overall

System

Software

Development

QA and

Integratio

n

Operations

and Support

Whole Team

l e a n

Go and See

“Go and See” what the real problem is.

The whole team should talk directly to

customers, ask questions, model and discuss

ideas before (and while) developing a product.

October 0841 Copyright©2008 Poppendieck.LLC

“When we started doing a lot of banking, we hired some product managers
with banking experience. One day one of them comes to a meeting that
included me and banking engineers and says, “I want these features.” And I
replied, “If you ever tell an engineer what features you want, I’m going to
throw you out on the street. You’re going to tell the engineers what problem
the consumer has. And then the engineers are going to provide you with a
better solution than you’ll ever get by telling them to put some dopey feature
in there.” Bill Campbell – Chairman, Intuit. Counselor – Apple, Google, etc.





































































What do you do on the team?

Product Portfolio

Customer

Design and
Coding

Risk Assesment

Business

Arch

PdM

Dev

PgM

Test

vs



















































Confidence

 visibility
 product utility













 Take notes!





































l e a n

Map the Value Stream

Multiple Value Streams

 Product Concept Product Starts Delivering Value

 Feature Request Feature in Production

 Urgent Need Maintenance Patch Deployed

October 0867 Copyright©2007 Poppendieck.LLC

Problem Solution

Value Stream

Value Stream

 The flow of activities that starts with a
customer in need, and ends when that
customer’s need is satisfied.

Process Capability:

 The reliable, repeatable cycle time from
customer need until that need is satisfied.

Cycle Time

ct

Cycle Time

l e a n

End-to-End Value Stream

What would you do?

October 0868 Copyright©2007 Poppendieck.LLC

Thanks to: Henrik Kniberg,

of Crisp, Stockholm
Used with Permission

Sam
Concept

pres.

Lisa

assigns

resources

Graphics

design

Sound

design
Dev

Integr. &

deploy

2d 1 m

4h

6m

8

Game

backlog

1w 6m 6m

15

Design-ready

games

12

Shelf

1m 3w

(3m total)

3w2h 1d

25 m cycle time
= 12%

Process

cycle

efficiency

Games out of date

 Missed market

windows

 Demotivated teams

 Overhead costs

1m

2m

3m Value Added Time

+

l e a n

Value Stream Examples

Request Approve
E-mail to
supervisor

E-mail to
Tech Lead

Technical
Assessment

Code & Test To
Verification

Verify
To

Opertions Deploy

2 hours
5 min

2 hours
2 min

1 hour
15 min

15 min 10 min
2 hours 15 min

Assign
Developer

5 hours 20 min
2 hours 40 min

33% Efficiency
8 hour cycle time

3 min
waste
value

Of course there is a
developer available.

Request
Approve &
Prioritize

Form sent
To Queue

Form sent

to Queue

Technical
Assessment

Code &
Test

To

Verification

Verify
& Fix

To
Opertions Deploy

½ week
5 min

2 weeks
2 min

2 weeks
15 min

1 week ½ week
2 hours 15 min

Form sent to

Queue

6 weeks + 4 hrs
2 hours 40 min3 min

waste
value

3 hr 45 min15 min

20 min total 4 hours total

Bi-weekly releases means a wait of
an average of 1 week for verification

Wait an average of 2
weeks for developers

Wait an average of 2
weeks for an architect

Weekly review of requests means
an average wait of ½ week

Extra 15 minutes to
fill out request form

Only 15 minutes of 4 hours
should be needed to verify

1% Efficiency
6 weeks + ~1 day

October 0869 Copyright©2008 Poppendieck.LLC

Example 1

Example 2

l e a n

Value Stream Examples

value

23 - 33%

Efficiency

1 week 1 day

1 hour

1 week ½

week

2-3 months to

merge

waste

2 weeks working together
How much is

Value? 1 hour

123 hours Value

500-660 Hours

Total Cycle Time

1 hour

Require-

ments
Develop Test

Require-

ments
Develop Test

QA

Marketing

requests New

Feature

Approval
Require-

ments
Develop Test Deploy

Require

-ments
Develop Test

Require-

ments
Develop Test

October 0870 Copyright©2008 Poppendieck.LLC

Example 3





Functionality 

D
o
n
e
n
e
s
s
 

Time

Waterfall

Extreme Programming

Incremental with cycles longer than in XP

Business
(Granularity of Requirement)

•
•

•
•

Technical
(Decomposition of SUT)

•
•
•
•





Typical when testing (& automation) is “QA’s job”

Functional Tests

Component

Unit

Manual or

Record &

Playback

Interface Tests

Use Case TestsWorkflow Tests







Business Rule Tests

Use Case Tests

Workflow

Tests

Various

automation tools

(or manual)

Keyword

Fit

ColumnFixtures

or Data-Driven

Interface Tests
Recorded ,

Scripted or

Manual



















1.

2.

3.



































l e a n

The Apparent Problem with

Two Party Interactions

Opportunism

Conventional Wisdom:

Companies inevitably look out for their own interests

Contracts are needed to limit opportunistic behavior

October 0886 Copyright©2008 Poppendieck.LLC

l e a n

The Real Problem with

Two Party Interactions

Conflict of Interest

The Lean Approach
Assume other party will act in good faith

Let the relationship limit opportunism

Use the contract to set up incentives
Align the best interests of each party

with the best interests of the joint venture

 Eliminate Conflicts of Interest!

October 0887 Copyright©2008 Poppendieck.LLC

l e a n

Fixed Price Contracts

Supplier is at greatest risk

Customer has little incentive to accept the work as complete

Generally does not give the lowest cost

Competent suppliers will include cost of risk in bid

Creates the game of low bid with expensive change orders

Generally does not give the lowest risk

 Selection favors the most optimistic [desperate] supplier

 Least likely to understand project’s complexity

 Most likely to need financial rescue

 Most likely to abandon the contract

Customers are least likely
to get what they really want

October 0888 Copyright©2008 Poppendieck.LLC

l e a n

Time-and-Materials Contracts

Customer is at greatest risk
 Supplier has little incentive to complete the work

 Therefore need to control supplier opportunism

Enter: Project Control Processes
Detailed Oversight by least knowledgeable party

 Supplier must justify every activity

Most Project Control Processes
 Increase costs

Do not add value

Assume that the original plan is the optimal plan

October 0889 Copyright©2008 Poppendieck.LLC

l e a n

Target Cost Contracts

Target cost

Target cost includes all changes

Target is the joint responsibility of both parties

Target cost is clearly communicated to workers

Negotiations occur if target cost is exceeded

Neither party benefits

Workers at all levels have clear incentives to work

collaboratively, compromise, and meet the target.

Remove Conflict of Interest.

October 0890 Copyright©2006 Poppendieck.LLC

l e a n

Contract Format

Structure

 Start With An Umbrella or Framework Contract

 Establish a Target Cost

Release Work In Stages

 Keep Stages Small

 Each Stage is an Iteration

 Scope Beyond the Existing Stage is Negotiable

Contract Form

Describes the relationship, not the deliverables

 Sets up a framework for future agreements

 Provides for mediation if no agreement is reached

October 0891 Copyright©2006 Poppendieck.LLC

(USE THIS SPACE FOR PRODUCT
LOGOS WHEN WHITE BACKGROUND

IS REQUIRED)

DELETE WHITE RECTANGLES IF NOT
BEING USED

















 msdn.microsoft.com/practices



 poppendieck.com



 blogs.msdn.com/agile

http://msdn.microsoft.com/practices
http://www.codeplex.com/Project/ProjectDirectory.aspx?TagName=patterns & practices
http://www.codeplex.com/Project/ProjectDirectory.aspx?TagName=patterns & practices
http://www.codeplex.com/Project/ProjectDirectory.aspx?TagName=patterns & practices
http://www.codeplex.com/Project/ProjectDirectory.aspx?TagName=patterns & practices

 Mary Poppendieck
 Tom Poppendieck
 Grigori Melnik
 Don Smith
 Ajoy Krishnamoorthy

(USE THIS SPACE FOR PRODUCT
LOGOS WHEN WHITE BACKGROUND

IS REQUIRED)

DELETE WHITE RECTANGLES IF NOT
BEING USED

© 2008 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.
The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market

conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation.
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

